On 31 August 2017 at 14:00, Nikolay Sivov <nsivov(a)codeweavers.com> wrote:
> - if (transform)
> - {
> - if (!d2d_matrix_invert(&g_i, transform))
> - return D2DERR_UNSUPPORTED_OPERATION;
> - d2d_point_transform(&point, &g_i, point.x, point.y);
> - }
> + if (FAILED(hr = geometry_inv_transform_point(transform, &point)))
> + return hr;
That's fine in principle, but please do it in a separate commit, and
please follow the existing conventions. E.g.:
if (transform && FAILED(hr = d2d_point_transform_inverse(&point,
transform, point.x, point.y)))
return hr;
> + stroke_width /= 2.0f;
> +
> + rect = geometry->u.rectangle.rect;
> + rect.left -= stroke_width;
> + rect.right += stroke_width;
> + rect.top -= stroke_width;
> + rect.bottom += stroke_width;
> +
> + dx = max(fabsf((rect.right + rect.left) / 2.0f - point.x) - (rect.right - rect.left) / 2.0f, 0.0f);
> + dy = max(fabsf((rect.bottom + rect.top) / 2.0f - point.y) - (rect.bottom - rect.top) / 2.0f, 0.0f);
> +
> + if ((*contains = tolerance * tolerance > (dx * dx + dy * dy)))
> + {
> + rect = geometry->u.rectangle.rect;
> + stroke_width += tolerance;
> + rect.left += stroke_width;
> + rect.right -= stroke_width;
> + rect.top += stroke_width;
> + rect.bottom -= stroke_width;
> +
> + *contains = rect.left >= point.x || rect.right <= point.x || rect.top >= point.y || rect.bottom <= point.y;
> + }
I think that looks a little more complicated than it needs to be. How about:
D2D1_POINT_2F d, s;
...
s.x = rect.right - rect.left;
s.y = rect.bottom - rect.top;
d.x = fabsf((rect.right + rect.left) * 0.5f - point.x);
d.y = fabsf((rect.bottom + rect.top) * 0.5f - point.y);
if (d.x < (s.x - stroke_width) * 0.5f - tolerance && d.y < (s.y -
stroke_width) * 0.5f - tolerance)
{
*contains = FALSE;
return S_OK;
}
d.x = max(d.x - (s.x + stroke_width) * 0.5f, 0.0f);
d.y = max(d.y - (s.y + stroke_width) * 0.5f, 0.0f);
*contains = (d.x * d.x + d.y * d.y) < tolerance * tolerance;
I notice you don't have any tests with transformations, is that
intentional? I think you'd need to transform the stroke width with the
transformation matrix.