Add an overall explanation of the driver architecture, and complete and precise specification for its intended behaviour.
Signed-off-by: Elizabeth Figura zfigura@codeweavers.com --- Documentation/userspace-api/index.rst | 1 + Documentation/userspace-api/ntsync.rst | 398 +++++++++++++++++++++++++ 2 files changed, 399 insertions(+) create mode 100644 Documentation/userspace-api/ntsync.rst
diff --git a/Documentation/userspace-api/index.rst b/Documentation/userspace-api/index.rst index 274cc7546efc..9c1b15cd89ab 100644 --- a/Documentation/userspace-api/index.rst +++ b/Documentation/userspace-api/index.rst @@ -63,6 +63,7 @@ Everything else vduse futex2 perf_ring_buffer + ntsync
.. only:: subproject and html
diff --git a/Documentation/userspace-api/ntsync.rst b/Documentation/userspace-api/ntsync.rst new file mode 100644 index 000000000000..767844637a7d --- /dev/null +++ b/Documentation/userspace-api/ntsync.rst @@ -0,0 +1,398 @@ +=================================== +NT synchronization primitive driver +=================================== + +This page documents the user-space API for the ntsync driver. + +ntsync is a support driver for emulation of NT synchronization +primitives by user-space NT emulators. It exists because implementation +in user-space, using existing tools, cannot match Windows performance +while offering accurate semantics. It is implemented entirely in +software, and does not drive any hardware device. + +This interface is meant as a compatibility tool only, and should not +be used for general synchronization. Instead use generic, versatile +interfaces such as futex(2) and poll(2). + +Synchronization primitives +========================== + +The ntsync driver exposes three types of synchronization primitives: +semaphores, mutexes, and events. + +A semaphore holds a single volatile 32-bit counter, and a static 32-bit +integer denoting the maximum value. It is considered signaled (that is, +can be acquired without contention, or will wake up a waiting thread) +when the counter is nonzero. The counter is decremented by one when a +wait is satisfied. Both the initial and maximum count are established +when the semaphore is created. + +A mutex holds a volatile 32-bit recursion count, and a volatile 32-bit +identifier denoting its owner. A mutex is considered signaled when its +owner is zero (indicating that it is not owned). The recursion count is +incremented when a wait is satisfied, and ownership is set to the given +identifier. + +A mutex also holds an internal flag denoting whether its previous owner +has died; such a mutex is said to be abandoned. Owner death is not +tracked automatically based on thread death, but rather must be +communicated using ``NTSYNC_IOC_MUTEX_KILL``. An abandoned mutex is +inherently considered unowned. + +Except for the "unowned" semantics of zero, the actual value of the +owner identifier is not interpreted by the ntsync driver at all. The +intended use is to store a thread identifier; however, the ntsync +driver does not actually validate that a calling thread provides +consistent or unique identifiers. + +An event is similar to a semaphore with a maximum count of one. It holds +a volatile boolean state denoting whether it is signaled or not. There +are two types of events, auto-reset and manual-reset. An auto-reset +event is designaled when a wait is satisfied; a manual-reset event is +not. The event type is specified when the event is created. + +Unless specified otherwise, all operations on an object are atomic and +totally ordered with respect to other operations on the same object. + +Objects are represented by files. When all file descriptors to an +object are closed, that object is deleted. + +Char device +=========== + +The ntsync driver creates a single char device /dev/ntsync. Each file +description opened on the device represents a unique instance intended +to back an individual NT virtual machine. Objects created by one ntsync +instance may only be used with other objects created by the same +instance. + +ioctl reference +=============== + +All operations on the device are done through ioctls. There are four +structures used in ioctl calls:: + + struct ntsync_sem_args { + __u32 sem; + __u32 count; + __u32 max; + }; + + struct ntsync_mutex_args { + __u32 mutex; + __u32 owner; + __u32 count; + }; + + struct ntsync_event_args { + __u32 event; + __u32 signaled; + __u32 manual; + }; + + struct ntsync_wait_args { + __u64 timeout; + __u64 objs; + __u32 count; + __u32 owner; + __u32 index; + __u32 alert; + __u32 flags; + __u32 pad; + }; + +Depending on the ioctl, members of the structure may be used as input, +output, or not at all. All ioctls return 0 on success. + +The ioctls on the device file are as follows: + +.. c:macro:: NTSYNC_IOC_CREATE_SEM + + Create a semaphore object. Takes a pointer to struct + :c:type:`ntsync_sem_args`, which is used as follows: + + .. list-table:: + + * - ``sem`` + - On output, contains a file descriptor to the created semaphore. + * - ``count`` + - Initial count of the semaphore. + * - ``max`` + - Maximum count of the semaphore. + + Fails with ``EINVAL`` if ``count`` is greater than ``max``. + +.. c:macro:: NTSYNC_IOC_CREATE_MUTEX + + Create a mutex object. Takes a pointer to struct + :c:type:`ntsync_mutex_args`, which is used as follows: + + .. list-table:: + + * - ``mutex`` + - On output, contains a file descriptor to the created mutex. + * - ``count`` + - Initial recursion count of the mutex. + * - ``owner`` + - Initial owner of the mutex. + + If ``owner`` is nonzero and ``count`` is zero, or if ``owner`` is + zero and ``count`` is nonzero, the function fails with ``EINVAL``. + +.. c:macro:: NTSYNC_IOC_CREATE_EVENT + + Create an event object. Takes a pointer to struct + :c:type:`ntsync_event_args`, which is used as follows: + + .. list-table:: + + * - ``event`` + - On output, contains a file descriptor to the created event. + * - ``signaled`` + - If nonzero, the event is initially signaled, otherwise + nonsignaled. + * - ``manual`` + - If nonzero, the event is a manual-reset event, otherwise + auto-reset. + +The ioctls on the individual objects are as follows: + +.. c:macro:: NTSYNC_IOC_SEM_POST + + Post to a semaphore object. Takes a pointer to a 32-bit integer, + which on input holds the count to be added to the semaphore, and on + output contains its previous count. + + If adding to the semaphore's current count would raise the latter + past the semaphore's maximum count, the ioctl fails with + ``EOVERFLOW`` and the semaphore is not affected. If raising the + semaphore's count causes it to become signaled, eligible threads + waiting on this semaphore will be woken and the semaphore's count + decremented appropriately. + +.. c:macro:: NTSYNC_IOC_MUTEX_UNLOCK + + Release a mutex object. Takes a pointer to struct + :c:type:`ntsync_mutex_args`, which is used as follows: + + .. list-table:: + + * - ``mutex`` + - Ignored. + * - ``owner`` + - Specifies the owner trying to release this mutex. + * - ``count`` + - On output, contains the previous recursion count. + + If ``owner`` is zero, the ioctl fails with ``EINVAL``. If ``owner`` + is not the current owner of the mutex, the ioctl fails with + ``EPERM``. + + The mutex's count will be decremented by one. If decrementing the + mutex's count causes it to become zero, the mutex is marked as + unowned and signaled, and eligible threads waiting on it will be + woken as appropriate. + +.. c:macro:: NTSYNC_IOC_SET_EVENT + + Signal an event object. Takes a pointer to a 32-bit integer, which on + output contains the previous state of the event. + + Eligible threads will be woken, and auto-reset events will be + designaled appropriately. + +.. c:macro:: NTSYNC_IOC_RESET_EVENT + + Designal an event object. Takes a pointer to a 32-bit integer, which + on output contains the previous state of the event. + +.. c:macro:: NTSYNC_IOC_PULSE_EVENT + + Wake threads waiting on an event object while leaving it in an + unsignaled state. Takes a pointer to a 32-bit integer, which on + output contains the previous state of the event. + + A pulse operation can be thought of as a set followed by a reset, + performed as a single atomic operation. If two threads are waiting on + an auto-reset event which is pulsed, only one will be woken. If two + threads are waiting a manual-reset event which is pulsed, both will + be woken. However, in both cases, the event will be unsignaled + afterwards, and a simultaneous read operation will always report the + event as unsignaled. + +.. c:macro:: NTSYNC_IOC_READ_SEM + + Read the current state of a semaphore object. Takes a pointer to + struct :c:type:`ntsync_sem_args`, which is used as follows: + + .. list-table:: + + * - ``sem`` + - Ignored. + * - ``count`` + - On output, contains the current count of the semaphore. + * - ``max`` + - On output, contains the maximum count of the semaphore. + +.. c:macro:: NTSYNC_IOC_READ_MUTEX + + Read the current state of a mutex object. Takes a pointer to struct + :c:type:`ntsync_mutex_args`, which is used as follows: + + .. list-table:: + + * - ``mutex`` + - Ignored. + * - ``owner`` + - On output, contains the current owner of the mutex, or zero + if the mutex is not currently owned. + * - ``count`` + - On output, contains the current recursion count of the mutex. + + If the mutex is marked as abandoned, the function fails with + ``EOWNERDEAD``. In this case, ``count`` and ``owner`` are set to + zero. + +.. c:macro:: NTSYNC_IOC_READ_EVENT + + Read the current state of an event object. Takes a pointer to struct + :c:type:`ntsync_event_args`, which is used as follows: + + .. list-table:: + + * - ``event`` + - Ignored. + * - ``signaled`` + - On output, contains the current state of the event. + * - ``manual`` + - On output, contains 1 if the event is a manual-reset event, + and 0 otherwise. + +.. c:macro:: NTSYNC_IOC_KILL_OWNER + + Mark a mutex as unowned and abandoned if it is owned by the given + owner. Takes an input-only pointer to a 32-bit integer denoting the + owner. If the owner is zero, the ioctl fails with ``EINVAL``. If the + owner does not own the mutex, the function fails with ``EPERM``. + + Eligible threads waiting on the mutex will be woken as appropriate + (and such waits will fail with ``EOWNERDEAD``, as described below). + +.. c:macro:: NTSYNC_IOC_WAIT_ANY + + Poll on any of a list of objects, atomically acquiring at most one. + Takes a pointer to struct :c:type:`ntsync_wait_args`, which is + used as follows: + + .. list-table:: + + * - ``timeout`` + - Absolute timeout in nanoseconds. If ``NTSYNC_WAIT_REALTIME`` + is set, the timeout is measured against the REALTIME clock; + otherwise it is measured against the MONOTONIC clock. If the + timeout is equal to or earlier than the current time, the + function returns immediately without sleeping. If ``timeout`` + is U64_MAX, the function will sleep until an object is + signaled, and will not fail with ``ETIMEDOUT``. + * - ``objs`` + - Pointer to an array of ``count`` file descriptors + (specified as an integer so that the structure has the same + size regardless of architecture). If any object is + invalid, the function fails with ``EINVAL``. + * - ``count`` + - Number of objects specified in the ``objs`` array. + If greater than ``NTSYNC_MAX_WAIT_COUNT``, the function fails + with ``EINVAL``. + * - ``owner`` + - Mutex owner identifier. If any object in ``objs`` is a mutex, + the ioctl will attempt to acquire that mutex on behalf of + ``owner``. If ``owner`` is zero, the ioctl fails with + ``EINVAL``. + * - ``index`` + - On success, contains the index (into ``objs``) of the object + which was signaled. If ``alert`` was signaled instead, + this contains ``count``. + * - ``alert`` + - Optional event object file descriptor. If nonzero, this + specifies an "alert" event object which, if signaled, will + terminate the wait. If nonzero, the identifier must point to a + valid event. + * - ``flags`` + - Zero or more flags. Currently the only flag is + ``NTSYNC_WAIT_REALTIME``, which causes the timeout to be + measured against the REALTIME clock instead of MONOTONIC. + * - ``pad`` + - Unused, must be set to zero. + + This function attempts to acquire one of the given objects. If unable + to do so, it sleeps until an object becomes signaled, subsequently + acquiring it, or the timeout expires. In the latter case the ioctl + fails with ``ETIMEDOUT``. The function only acquires one object, even + if multiple objects are signaled. + + A semaphore is considered to be signaled if its count is nonzero, and + is acquired by decrementing its count by one. A mutex is considered + to be signaled if it is unowned or if its owner matches the ``owner`` + argument, and is acquired by incrementing its recursion count by one + and setting its owner to the ``owner`` argument. An auto-reset event + is acquired by designaling it; a manual-reset event is not affected + by acquisition. + + Acquisition is atomic and totally ordered with respect to other + operations on the same object. If two wait operations (with different + ``owner`` identifiers) are queued on the same mutex, only one is + signaled. If two wait operations are queued on the same semaphore, + and a value of one is posted to it, only one is signaled. + + If an abandoned mutex is acquired, the ioctl fails with + ``EOWNERDEAD``. Although this is a failure return, the function may + otherwise be considered successful. The mutex is marked as owned by + the given owner (with a recursion count of 1) and as no longer + abandoned, and ``index`` is still set to the index of the mutex. + + The ``alert`` argument is an "extra" event which can terminate the + wait, independently of all other objects. + + It is valid to pass the same object more than once, including by + passing the same event in the ``objs`` array and in ``alert``. If a + wakeup occurs due to that object being signaled, ``index`` is set to + the lowest index corresponding to that object. + + The function may fail with ``EINTR`` if a signal is received. + +.. c:macro:: NTSYNC_IOC_WAIT_ALL + + Poll on a list of objects, atomically acquiring all of them. Takes a + pointer to struct :c:type:`ntsync_wait_args`, which is used + identically to ``NTSYNC_IOC_WAIT_ANY``, except that ``index`` is + always filled with zero on success if not woken via alert. + + This function attempts to simultaneously acquire all of the given + objects. If unable to do so, it sleeps until all objects become + simultaneously signaled, subsequently acquiring them, or the timeout + expires. In the latter case the ioctl fails with ``ETIMEDOUT`` and no + objects are modified. + + Objects may become signaled and subsequently designaled (through + acquisition by other threads) while this thread is sleeping. Only + once all objects are simultaneously signaled does the ioctl acquire + them and return. The entire acquisition is atomic and totally ordered + with respect to other operations on any of the given objects. + + If an abandoned mutex is acquired, the ioctl fails with + ``EOWNERDEAD``. Similarly to ``NTSYNC_IOC_WAIT_ANY``, all objects are + nevertheless marked as acquired. Note that if multiple mutex objects + are specified, there is no way to know which were marked as + abandoned. + + As with "any" waits, the ``alert`` argument is an "extra" event which + can terminate the wait. Critically, however, an "all" wait will + succeed if all members in ``objs`` are signaled, *or* if ``alert`` is + signaled. In the latter case ``index`` will be set to ``count``. As + with "any" waits, if both conditions are filled, the former takes + priority, and objects in ``objs`` will be acquired. + + Unlike ``NTSYNC_IOC_WAIT_ANY``, it is not valid to pass the same + object more than once, nor is it valid to pass the same object in + ``objs`` and in ``alert``. If this is attempted, the function fails + with ``EINVAL``.