On 01.09.2017 1:25, Henri Verbeet wrote:
On 31 August 2017 at 14:00, Nikolay Sivov [email protected] wrote:
- if (transform)
- {
if (!d2d_matrix_invert(&g_i, transform))
return D2DERR_UNSUPPORTED_OPERATION;
d2d_point_transform(&point, &g_i, point.x, point.y);
- }
- if (FAILED(hr = geometry_inv_transform_point(transform, &point)))
return hr;
That's fine in principle, but please do it in a separate commit, and please follow the existing conventions. E.g.:
if (transform && FAILED(hr = d2d_point_transform_inverse(&point,
transform, point.x, point.y))) return hr;
Sure.
- stroke_width /= 2.0f;
- rect = geometry->u.rectangle.rect;
- rect.left -= stroke_width;
- rect.right += stroke_width;
- rect.top -= stroke_width;
- rect.bottom += stroke_width;
- dx = max(fabsf((rect.right + rect.left) / 2.0f - point.x) - (rect.right - rect.left) / 2.0f, 0.0f);
- dy = max(fabsf((rect.bottom + rect.top) / 2.0f - point.y) - (rect.bottom - rect.top) / 2.0f, 0.0f);
- if ((*contains = tolerance * tolerance > (dx * dx + dy * dy)))
- {
rect = geometry->u.rectangle.rect;
stroke_width += tolerance;
rect.left += stroke_width;
rect.right -= stroke_width;
rect.top += stroke_width;
rect.bottom -= stroke_width;
*contains = rect.left >= point.x || rect.right <= point.x || rect.top >= point.y || rect.bottom <= point.y;
- }
I think that looks a little more complicated than it needs to be. How about:
D2D1_POINT_2F d, s;
... s.x = rect.right - rect.left; s.y = rect.bottom - rect.top; d.x = fabsf((rect.right + rect.left) * 0.5f - point.x); d.y = fabsf((rect.bottom + rect.top) * 0.5f - point.y);
if (d.x < (s.x - stroke_width) * 0.5f - tolerance && d.y < (s.y -
stroke_width) * 0.5f - tolerance) { *contains = FALSE; return S_OK; }
d.x = max(d.x - (s.x + stroke_width) * 0.5f, 0.0f); d.y = max(d.y - (s.y + stroke_width) * 0.5f, 0.0f); *contains = (d.x * d.x + d.y * d.y) < tolerance * tolerance;
Ok, I'll take a look.
I notice you don't have any tests with transformations, is that intentional? I think you'd need to transform the stroke width with the transformation matrix.
No particular reason, but it's a good point. Also we don't have any tests for non-invertible case apparently, I'll add some.